zakaz@penzaelektrod.ru Заказать обратный звонок

Бесплатный звонок из России

8 (800) 200-01-42

Отдел продаж. Время работы: Пн-Пт 7:30-16:30

+7 (8412) 23-50-93

Сварка плавящимся электродом в среде защитного газа. Оборудование

Процесс сварки в защитном газе, gas metal arc welding (GMAW), был разработан и стал коммерчески доступен в 1948 году, хотя основные понятия были введены в 20-х годах XX века. Сварка в защитном газе плавящимся электродом, metal inert gas (MIG), была запатентована в США в 1949 году для сварки алюминия. Дуга и сварочная ванна формировались из чистого токопроводящего электрода и защищались гелием. В 1952 году процесс стал популярен в Великобритании. В качестве защитного газа для сварки алюминия стали использовать аргон, а для углеродистых сталей — углекислый газ и смесь аргона с углекислым газом. Углекислый газ относится к активным газам, и, соответственно, процесс стал называться metal active gas (MAG) processes.

GMAW процесс использует как с полуавтоматическим, так и с автоматическим оборудованием. Этим процессом могут свариваться большинство металлов, а при низких энергетических показателях процесса сварка может производиться во всех пространственных положениях. GMAW — экономный процесс, который практически не требует очистки сварного шва. Уменьшаются неровности шва и обработка металла шва минимальная по сравнению со сваркой покрытыми электродами.

MIG/MAG — дуговая сварка плавящимся металлическим электродом (проволокой) в среде инертного/активного газа с непрерывной автоматической подачей электродной проволоки. Зона сварки защищается извне подаваемым газом. GMA сварка с успехом применяется при автоматизированной и роботизированной сварке. Наибольшее распространение получила полуавтоматическая сварка, как наиболее универсальная. Иногда этот метод сварки обозначают GMA (Gas Metal Arc). Применение термина <полуавтоматическая> не вполне корректно, поскольку оборудование предусматривает автоматическое саморегулирование дуги и скорость плавления электрода. Единственное ручное управление, требуемое от сварщика при полуавтоматической сварке, — позиционирование и перемещение с определенной скоростью сварочной горелки. Длина дуги и сварочный ток поддерживаются автоматически.

Управление процессом сварки и режимом дуги осуществляется тремя основными элементами установки для сварки в защитном газе:

1) сварочная горелка и подающий рукав;

2) механизм подачи проволоки;

3) источник сварочного тока.

Сварочная горелка и подающий рукав выполняют три функции — подают защитный газ в область горения дуги, подают сварочную проволоку к контактному наконечнику и подводят сварочный ток к контактному наконечнику. На рукоятке горелки имеется выключатель, нажатие на который включает и выключает сварочный ток, подачу проволоки и подачу газа.

Механизм подачи сварочной проволоки и источник сварочного тока для обеспечения автоматического саморегулирования длины дуги соединены обратной связью. Для MIG/MAG сварки применяются два типа источников сварочного тока: источник с постоянным (неизменным) током и источник с постоянным (неизменным) напряжением.

Источник сварочного тока. Источник сварочного тока поставляет электроэнергию дуге, горящей между электродом и заготовкой. В большинстве случаев для GMAW процессов используется постоянный ток обратной полярности, т. е. плюс на электроде, минус на изделии.

Большинство установок MIG/MAG сварки имеет источник сварочного тока с постоянным (неизменным) напряжением и с постоянной скоростью подачи электродной проволоки, т. е. блок питания поддерживает постоянное напряжение в процессе сварки. Основная причина широкого распространения таких источников сварочного тока — самокорректирующаяся длина дуги, присущая этой системе.

Для саморегулирующих систем источник питания должен иметь жесткую, пологопадающую характеристику. Напряжение дуги задается установкой выходного напряжения в блоке питания. Скорость подачи электродной проволоки во время сварки неизменна. Наибольшее распространение этот вид источника питания получил в установках полуавтоматической (ручной) сварки, т. е. когда происходят быстрые и частые изменения длины дуги. При этом даже незначительное изменение длины дуги вызывает, соответственно, незначительное изменение напряжения на дуге, dU. Это, в свою очередь, вызывает значительное изменение сварочного тока, dI, и как следствие изменяется скорость плавления проволоки.

Рисунок 4 схематически иллюстрирует механизм автокоррекции. Когда сварочная горелка отодвигается от изделия, увеличивается расстояние L между сварочной проволокой и изделием, при этом увеличивается напряжение на дуге.

 

pic_ds_4
Рис. 4. Саморегулирование длины сварочной дуги.

 

Желаемая длина дуги выбирается путем регулирования выходного напряжения источника сварочного тока, и никакие другие изменения в процессе сварки не требуются. Скорость подачи проволоки задается сварщиком до начала сварки и может регулироваться в больших пределах.

Некоторые установки GMAW сварки, тем не менее, используют блоки питания с постоянным (неизменным) током. При этом источник сварочного тока имеет крутопадающую характеристику, т. е. незначительное изменение длины дуги вызывает незначительное изменение сварочного тока, но значительное изменение напряжения на дуге. В ответ на изменение напряжения на дуге система изменяет скорость подачи проволоки, увеличивая или уменьшая ее.

Сварочный ток устанавливается соответствующей установкой в блоке питания. Длина дуги и, соответственно, напряжение на дуге управляются и поддерживаются автоматической подачей электродной проволоки. Этот тип сварки лучше всего подходит при сварке электродной проволокой большого диаметра установками автоматической сварки, когда не требуется быстрого изменения скорости подачи проволоки. Система несаморегулирующаяся.

Вольт-амперная характеристика источника сварочного тока имеет наклон. Наклон кривой отражает характеристику блока питания и измеряется в омах, т. е.

Наклон = dU/dI = Ом.

Это уравнение показывает, что наклон вольт-амперной характеристики эквивалентен сопротивлению. Тем не менее, наклон характеристики обычно определяют как изменение напряжения при изменении тока на 100 А. Например, наклон 0,03 Ом представляет изменение напряжения на 3 В при изменении сварочного тока на 100 А.

Наклон характеристики можно вычислить, зная напряжение холостого хода источника питания, сварочный ток и напряжение на зажимах источника питания при сварке, например если напряжение холостого хода Uxx = 48 В, а рабочей точке соответствуют 28 В и 200 А, то наклон: (48 — 28)/200 = 10 В на 100 А.

От наклона вольт-амперной характеристики источника питания зависит ток короткого замыкания: чем больше наклон, тем меньше ток короткого замыкания.

Сварочная горелка. Сварочная горелка предназначена для подачи сварочной проволоки и защитного газа в зону сварки и передачи сварочного тока сварочной проволоке. Существует множество разновидностей горелок, как с воздушным, так и с водяным охлаждением, с прямыми и изогнутыми соплами. Горелки с изогнутыми соплами облегчают выполнение сварных швов в труднодоступных местах и углах.

Основные детали горелок (рис. 5):

    • контактная трубка;
    • сопло;
    • подающий рукав;
    • направляющий канал;
    • выключатель.

Контактная трубка, обычно выполненная из меди или медного сплава, предназначена для передачи сварочного тока электродной проволоке и направления проволоки к месту сварки. Контактная трубка присоединяется к сварочному кабелю. Поскольку электродная пpoвoлка движется непрерывно, втулка имеет скользящий контакт для передачи сварочного тока с кабеля на электрод. Большое значение имеет качество внутренней поверхности трубки, так как электрод должен легко скользить в ней, но в то же время иметь хороший контакт. Для минимизации нагрева корпуса горелки периодически по мере износа контактной трубки ее необходимо заменять. Для каждого диаметра электродной проволоки предназначена своя контактная втулка.

 

pic_ds_5
Рис. 5. Устройство газовой горелки.

 

Сопло равномерно направляет струю защитного газ в зону сварки. Равномерность потока чрезвычайно важна в обеспечении требуемой защиты расплавленного металла сварочной ванны от воздействия атмосферы. Размер сопла выбирают в зависимости от режима сварки, т. е. сопло большого диаметра предназначено для сварки с большой плотностью сварочного тока, когда сварочная ванна имеет большой размер.

Подающий рукав и направляющий канал подключаются к механизму подачи электродной (сварочной) проволоки и подают электродную проволоку от механизма подачи к сварочной горелке. Для уменьшения трения и облегчения скольжения электронной проволоки направляющий канал подающего рукава имеет тефлоновое покрытие. При выполнении сварочных работ не допускается скручивать кольцами подающий рукав и сильно изгибать его. Стандартная длина подающего рукава 3-4 м. Более длинные поставляются по специальному заказу.

При большой длине подающего рукава иногда применяется горелка с небольшим встроенным механизмом подачи проволоки. Такая система позволяет тянуть проволоку от удаленного механизма подачи проволоки.

Электродная проволока. Сварка в защитном газе производится сплошной или порошковой проволокой диаметром 0,5-2,4 мм (в аргоне — до 4 мм). Выбор электродной проволоки производится в зависимости от материала свариваемого изделия и режима сварки. Экономически выгодно использовать предельно допустимый режим сварки. В табл. 10 приведен выбор, а в табл. 11 — краткая характеристика некоторых марок электродной проволоки.

Для GMAW процессов сварки наиболее часто применяется проволока СВ08Г2С (ГОСТ 2246-70), имеющая следующий состав: углерод — 0,05-0,11%; марганец — 1,8-2,10%; кремний — 0,7-0,95%; сера — <0,025%; фосфор -<0,030%; медь — <0,025%. Обмедненная поверхность проволоки предохраняет основной металл от окисления, а также придает мягкость скольжения при прохождении проволоки в стволе горелки.

Скорость сварки непосредственно связана со скоростью подачи электродной проволоки (если скорость подачи проволоки в процессе сварки неизменна), т. е. увеличение (или уменьшение) скорости подачи проволоки вызывает увеличение (или уменьшение) скорости сварки.

 

tabl_ds_10
Таблица 10. Выбор электродной проволоки для GMAW процесса.

 

tabl_ds_11
Таблица 11. Краткая характеристика электродной проволоки.

 

Следует обратить внимание на то, что на приведенном графике характеристика оплавления электродной проволоки (при любом диаметре) непрямолинейна, хотя в нижней части практически прямолинейна. Одним словом, для каждого сечения есть пропорциональный участок, когда увеличение скорости подачи пропорционально увеличению сварочного тока и, соответственно, увеличению скорости сварки. Тем не менее, при максимально допустимых значениях сварочного тока, особенно для проволоки малых диаметров, характеристика оплавления приобретает криволинейный характер. В этой области увеличение скорости подачи проволоки вызывает большее оплавление проволоки, и тем большее, чем больше увеличение скорости. Это связано с увеличивающимся нагревом проволоки проходящим по ней сварочным током. Чем выше плотность тока, тем больше нагрев проволоки, находящейся между дугой и контактным наконечником сварочной горелки, и тем выше скорость ее плавления.

Механизм подачи электродной проволоки. Электрод (электродная проволока) в зону сварки подается с помощью специального устройства — механизма подачи. Механизм подачи электродной проволоки состоит из электродвигателя постоянного тока, роликов и катушки с проволокой. Реостат, включенный в обмотку двигателя, позволяет плавно изменять скорость вращения электродвигателя и тем самым изменять скорость подачи электродной проволоки.

В качестве примера рассмотрим устройство и работу механизма подачи проволоки <Форсаж-МП>. Механизм подачи проволоки <Форсаж-МП> предназначен для работы в составе сварочных полуавтоматов при проведении сварочных работ в производстве, где необходима сварка деталей, узлов и сборок, изготовленных из углеродистых и легированных сталей.

Конструктивно механизм подачи проволоки выполнен в виде переносного устройства. На передней панели расположены:

    • индикатор <Питание>, сигнализирующий о включении механизма подачи проволоки, исправном состоянии и готовности к работе;
    • регулятор для регулирования выходного напряжения сварочного выпрямителя;
    • регулятор скорости подачи электродной проволоки;
    • переключатель прерывистого/непрерывного режима сварки;
    • переключатель для выбора режима управления с кнопки на сварочной горелке (двухтактный или четырехтактный режим);
    • кнопка для открывания отсекателя газа и продува шланга подачи газа перед работой;
  • выходная розетка для присоединения фидера сварочной горелки.

 

На боковой панели располагаются ручки управления процессом сварки:

    • регуляторы <Тп> и <Тсв> для регулирования временных параметров прерывистого режима сварки;
    • регулятор <Тпр> для установки времени подачи газа перед началом процесса сварки (<предгаз>);
    • регулятор <Тпст> для установки времени подачи газа после завершения процесса сварки (<постгаз>);
  • регулятор <Трет> для установки времени заварки кратера (<растяжка дуги>) .

 

На задней панели механизма подачи проволоки размещены:

    • тумблер выключения питания;
    • вилка для подачи питания и осуществления управления источником сварочного тока;
    • вилка для подключения выходного кабеля положительной полярности источника сварочного тока;
    • отверстие для подачи электродной проволоки с катушки внутрь механизма;
  • втулка для присоединения резинового шланга от баллона с защитным газом (на этой втулке с помощью накидной гайки крепится ниппель, на который непосредственно крепится шланг подачи газа) .

 

На правой боковой стенке под откидной крышкой моноблока расположен люк для осуществления заправки электродной проволоки с катушки через ролики в горелку. Внутри этого люка на стенке расположена кнопка <Прогон> для включения мотора при заправке проволоки в подающий механизм.

Функциональная схема механизма подачи проволоки <Форсаж-МП> состоит из трех взаимосвязанных модулей (рис. 6):

    • ПУ МПП — пульт управления механизмом подачи проволоки;
    • MP — мотор-редуктор;
    • ОГ — отсекатель газа.
pic_ds_6
Рис. 6. Функциональная схема механизма подачи проволоки

 

В зависимости от рабочего состояния механизма подачи проволоки ПУ МПП выдает на индикатор И1 сигнал световой информации о подаче электропитания.

ПУ МПП управляет работой MP и ОГ в зависимости от установок оператора и команд, поступающих от сварочной горелки. ОГ и MP по сигналам ПУ МПП обеспечивают подачу через выходной разъем (BP) и сварочную горелку газа и электродной проволоки. Проволока подается с оптимальным начальным ускорением и установленной оператором необходимой для полуавтоматической сварки рабочей скоростью. С помощью кнопки на сварочной горелке осуществляется управление работой MP и по командам оператора обеспечивается включение и выключение сварочного тока, а также подача газа и электродной проволоки.

Применение механизма подачи проволоки <Форсаж-МП> при проведении сварочных работ обеспечивает:

    • плавное регулирование скорости подачи электродной проволоки;
    • стабильность процесса подачи электродной проволоки;
    • простоту заварки кратера сварного шва с использованием режима <растяжки дуги>;
    • возможность работы в продолжительном режиме, а также в режиме регулируемых коротких швов;
  • возможность двухтактного (путем нажатия и удержания кнопки управления в течение сварочного цикла) и четырехтактного (кратковременным включением и выключением кнопки управления в начале и в конце каждого сварочного цикла) управления процессом подачи проволоки.

 

Перед началом сварки, сварщик должен выбрать размер электрода (диаметр сварочной проволоки), проверить соответствие контактного наконечника горелки выдранному диаметру проволоки, установить напряжение, интенсивность газового потока, скорость подачи электродной проволоки. До ввода сварочной проволоки в горелку необходимо проверить, что подающий ролик, направляющий канал и токоподводящее сопло соответствуют выбранной проволоке. Усилие прижима проволоки должно быть таким, чтобы выходящая через горелку проволока допускала легкое торможение пальцами. Вылет электрода устанавливается в зависимости от диаметра электродной проволоки.

При полуавтоматическом MIG/MAG способе сварка производится сплошной или порошковой проволокой в среде защитного газа. Конструктивно аппараты состоят из выпрямителя с жесткой внешней характеристикой и механизма подачи сварочной проволоки, выполненных или в одном корпусе (компактное решение), или раздельно. В качестве сварочных материалов применяются защитные газы и сварочная проволока соответствующего химического состава (как правило, в катушках). Способ отличается высокой производительностью. Возможна сварка углеродистых и легированных сталей, алюминиевых сплавов и нержавеющей стали.

Современные установки для качественной MIG/MAG сварки обеспечивают:

    • режим <мягкого> старта, при котором в первый момент сварки проволока из горелки выходит медленнее, обеспечивая сразу после зажигания дуги легкое начало сварочного процесса;
    • режим гашения дуги после остановки проволоки для предотвращения ее вваривания после завершения сварочного цикла;
    • защиту от образования шарика на проволоке после завершения сварки, что необходимо для легкого продолжения сварки без дефектов;
    • заварку кратера, обеспечивая гладкий сварочный шов;
    • систему <антиприлипания> проволоки в начале сварки;
    • плавное регулирование скорости подачи проволоки;
    • режим электронного контроля скорости подачи проволоки (обеспечивается постоянная скорость);
    • возможность изменения полярности для сварки порошковой проволокой;
    • сварку с циклическим изменением мощности;
    • режим сварки короткой дугой высокой стабильности без разбрызгивания;
    • режим сварки оптимизированной короткой дугой;
    • режим импульсной сварки тонколистового металла;
    • режим импульсной сварки с низким уровнем шума сварочной дуги;
    • режим импульсной <спрей-сварки>, позволяющей при токе высокой мощности получать плотные сварные швы без дефектов;
    • возможность изменения сварочного тока двойным быстрым нажатием триггера горелки: жим <2Т> — метод управления сваркой двумя нажатиями триггера горелки (1 — нажатие триггера — начало сварки; 2 — отпускание триггера -завершение сварки); жим <4Т> — метод управления сваркой четырьмя нажатиями триггера горелки (1 — нажатие триггера — предварительная подача газа (продув); 2 — отпускание триггера — начало сварки; 3 — нажатие триггера — завершение сварки с последующей подачей газа для защиты остывающей сварочной ванны; 4 — отпускание триггера — завершение подачи газа);
    • режим точечной сварки — при нажатии триггера установка продолжает сварку в течение заранее установленного времени, после истечения этого времени установка автоматически завершает сварку, образуя при каждом сварочном цикле абсолютно одинаковое количество наплавленного металла;
    • режим периодической сварки — повторяющаяся точечная сварка; при нажатии триггера установка продолжает сварку в течение заранее установленного времени, затем пауза в течение необходимого времени, и так цикл повторяется много раз, до тех пор, пока нажат триггер.

задайте вопрос
нашему менеджеру

Задать вопрос
Даю согласие получать звонки от ПЭ и согласен(а) на обработку своих персональных данных
shop

Заказать
обратный звонок

Отправить
Даю согласие получать звонки от ПЭ и согласен(а) на обработку своих персональных данных

получите образцы сварочных электродов бесплатно,
а так же полный каталог с оптовыми ценами

Поставьте галочку
на интересующую
Вас позицию
АНО-4 АНО-21 УОНИ 13/45 УОНИ 13/55
МР-3 МР-3С ОЗС-12 ПЭ ОК 46.00 ПЭ LB-52U
Получить образцы
Даю согласие получать звонки от ПЭ и согласен(а) на обработку своих персональных данных

ПРОИЗВОДИМ
СВАРОЧНЫЕ ЭЛЕКТРОДЫ
ПО ИНДИВИДУАЛЬНЫМ
ЗАКАЗАМ И НЕСТАНДАРТНЫМ ХАРАКТЕРИСТИКАМ

Отправить
Даю согласие получать звонки от ПЭ и согласен(а) на обработку своих персональных данных